Sistema de numeração hexadecimal


(Redirecionado de Hexadecimal)

O sistema hexadecimal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.

Está vinculado a informática, pois os computadores costumam utilizar o byte ou octeto como unidade básica da memória; e, devido a um byte representar \({\displaystyle 2^{8}=256}\) valores possíveis, e isto pode representar-se como \({\displaystyle 2^{8}=2^{4}\cdot 2^{4}=16\cdot 16=1\cdot 16^{2}+0\cdot 16^{1}+0\cdot 16^{0}}\), o que, segundo o teorema geral da numeração posicional, equivale ao número em base 16 \({\displaystyle 100_{16}}\), dois dígitos hexadecimais correspondem exactamente —permitem representar a mesma linha de inteiros— a um byte.

Ele é muito utilizado para representar números binários de uma forma mais compacta, pois é muito fácil converter binários pra hexadecimal e vice-versa. Dessa forma, esse sistema é bastante utilizado em aplicações de computadores e microprocessadores (programação, impressão e displays).

Devido ao sistema decimal geralmente usado para a numeração apenas dispor de dez símbolos, deve-se incluir seis letras adicionais para completar o sistema. O conjunto de símbolos fica, portanto, assim

\({\displaystyle S=\{0,1,2,3,4,5,6,7,8,9,\mathrm {A} ,\mathrm {B} ,\mathrm {C} ,\mathrm {D} ,\mathrm {E} ,\mathrm {F} \}}\)

Índice

Contagem em Hexadecimal


Assim como nos outros sistemas numéricos, após o uso de todos os dígitos hexadecimais, se inicia a repetição com a adição de outro dígito: (...) 8, 9,A(10), B(11), C(12), D(13), E(14), F(15), ... Pode parecer pouca a diferença para os números decimais, porém esses 6 dígitos a mais fazem muita diferença. Por exemplo, com dois dígitos, em decimal, é possível fazer 100 combinações diferentes. Em hexadecimal, esse número sobe para 256.

Conversão de Binário para Hexadecimal


Um dígito em hexadecimal pode representar um número binário de 4 dígitos, dessa forma, para transformar um binário em hexadecimal, separamos o binário em grupos de 4 bits, começando pela direita.

Exemplo:

Binário: 1101000101100011.

1º - separar em grupos de quatro bits:

1101 0001 0110 0011

2º - identificar os números hexadecimais correspondentes:

1101 = D
0001 = 1
0110 = 6
0011 = 3

Hexadecimal: D163.

Conversão de Hexadecimal para Binário


É o inverso do processo anterior. Cada digito será transformado em um número binário de 4 bits.

Exemplo:
Hexadecimal: F2A7F = 1111
2 = 0010
A = 1010
7 = 0111

Binário: 1111001010100111.

Conversão de Decimal para Hexadecimal


Ver-se-á um exemplo numérico para obter o valor de uma representação hexadecimal: 3E0A(16) = 3×163 + E×162 + 0×161 + A×160 = 3×4096  + 14×256 + 0×16 + 10×1 = 15882

Exemplos para obter um número hexadecimal de um número decimal:

Divide-se o número decimal por 16. 
           
          85|_16
        - 80   5,3125  Pode-se perceber que contém vírgula nesta divisão,porém, utilizaremos 
          --           apenas o quociente (5) e resto da divisão antes da vírgula (5), 
          050          Não esquecendo de colocar o quociente primeiro e depois o resto.
         - 48          Decimal 85 = 55(hex)
           --
           020         79|_16       O número 79 também contêm vírgula. Pegamos 4  
          - 16       - 64   4,9375  e 15 que é igual a F.
            --         --           Decimal 79 = 4F(hex) 
            040        15
           - 32        .
             --        .
             080
            - 80
              --
               0

Adição Hexadecimal


É possível realizar adições diretamente com números hexadecimais. Basta lembrar que os dígitos 0-9 equivalem aos mesmos em decimal, e que os dígitos a-f equivalem aos decimais 10-15. Assim como na soma de decimais, devemos começar pela direita.

  1. Realize a soma por colunas, e pense nos valores decimais dos dígitos
  2. Se a soma dos dígitos for menor que 15 (em decimal), registre o valor (em hexadecimal)
  3. Se a soma dos dígitos for maior que 15, subtraia 16 do resultado, registre o numero hexadecimal e gere um carry na próxima coluna
Exemplo:

\({\displaystyle DF+AC}\)

\({\displaystyle F+C=15+12=27}\)

\({\displaystyle 27-16=11=B}\)

\({\displaystyle D+A+1(carry)=13+10+1=24}\)

\({\displaystyle 24-16=8}\) com carry de 1. Então: \({\displaystyle DF+AC=18B}\)

Tabela de conversão entre hexadecimal, decimal, octal e binário


0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

Fracções


As fracções, no seu desenvolvimento hexadecimal, não são exactas a menos que o denominador seja potência de 2. Contudo, os períodos não costumam ser muito complicados.

1/2 = 0,8
1/3 = 0,55...
1/4 = 0,4
1/5 = 0,33...
1/6 = 0,2AA...
1/7 = 0,249249...
1/8 = 0,2
1/9 = 0,1C1C...
1/A = 0,199...
1/B = 0,1745D1745D...
1/C = 0,155...
1/D = 0,13B13B...
1/E = 0,1249249...
1/F = 0,11...

Tabela de multiplicação


0 1 2 3 4 5 6 7 8 9 A B C D E F 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E 20
3 0 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D 30
4 0 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40
5 0 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 50
6 0 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 60
7 0 7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 70
8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80
9 0 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 90
A 0 A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A0
B 0 B 16 21 2C 37 42 4E 58 63 6E 79 84 8F 9A A5 B0
C 0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C0
D 0 D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D0
E 0 E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 E0
F 0 F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0
10 0 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 100

Referências


Ver também


Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o .









Categorias: Sistemas de numeração | Aritmética computacional




Data da informação: 23.09.2021 10:40:32 CEST

Fonte: Wikipedia (Autores [História])    Licença: CC-BY-SA-3.0

Mudanças: Todas as imagens e a maioria dos elementos de design relacionados a essas foram removidos. Alguns ícones foram substituídos por FontAwesome-Icons. Alguns modelos foram removidos (como "o artigo precisa de expansão) ou atribuídos (como" notas de rodapé "). As classes CSS foram removidas ou harmonizadas.
Os links específicos da Wikipedia que não levam a um artigo ou categoria (como "Redlinks", "links para a página de edição", "links para portais") foram removidos. Todo link externo possui um FontAwesome-Icon adicional. Além de algumas pequenas mudanças de design, foram removidos os contêineres de mídia, mapas, caixas de navegação, versões faladas e microformatos geográficos.

Observe: Como o conteúdo fornecido é retirado automaticamente da Wikipedia no momento especificado, uma verificação manual foi e não é possível. Portanto, o LinkFang.org não garante a precisão e a atualidade do conteúdo adquirido. Se houver uma informação incorreta no momento ou com uma exibição imprecisa, sinta-se à vontade para Contate-Nos: email.
Veja também: Cunho & Política de Privacidade.