Proeminência topográfica - pt.LinkFang.org

Proeminência topográfica


Em topografia e orografia, a proeminência topográfica, que também se pode denominar factor primário, altura relativa ou altura autónoma é um conceito usado para a classificação de colinas e montanhas. Define-se como o desnível mínimo que há que descer desde o cume de uma colina ou montanha para chegar a outra qualquer, desde que seja mais alta, isto é, tenha maior altitude. Quanto maior proeminência topográfica tem uma montanha, mais se destaca entre as que a rodeiam, independentemente da sua altitude. A proeminência, tal como a altitude, é um valor absoluto para uma montanha, já que depende unicamente do ponto mais baixo que une uma montanha com qualquer outra mais alta que ela.

Todas as montanhas, excepto o Monte Everest, têm uma montanha de maior altura do que ela. Isto quer dizer que para qualquer outro monte tem de existir algum lugar tal que para passar desse monte a outro que seja mais alto, se perca a menor altitude possível. Esta simples observação, que já foi estudada pelo físico escocês James Clerk Maxwell, levou-o a pensar na existência de uma relação inequívoca entre cada um dos cumes da superfície terrestre e um ponto de sela (saddle). O aspecto mais complexo desta análise consiste em determinar qual é o trajecto de desnível mínimo que permita relacionar as duas montanhas.

Índice

Importância do conceito de proeminência


A proeminência é um dado tão ou mais relevante que a altitude para determinar a importância de uma montanha. É uma medida objectiva que se relaciona fortemente com o significado subjectivo de um cume. Dá-nos ideia da sua relevância com referência às montanhas que a rodeiam. Os picos de proeminência baixa costumam ser picos subsidiários (subcumes) de outros principais, e os de proeminência alta indicam que a relevância da montanha é elevada, tendendo a ser os pontos mais altos da vizinhança e costumam ter vistas desafogadas em seu redor.

Devido ao conceito de proeminência, os três cumes secundários do Kanchenjunga que estão acima dos 8.000 metros não figuram na listagem oficial das montanhas com mais de oito mil metros de altitude já que entre elas há muito pouco desnível (têm pouca proeminência) o o K2 (altitude, 8.611m; proeminência, 4.017 m) é considerado o segundo cume mais importante, à frente do cume sul do Monte Everest (altitude, 8.749 m; proeminência, 10 m).

Definição de proeminência


As seguintes definições são equivalentes:

Cálculo da proeminência


A avaliação da proeminência consiste na determinação do colo-chave que, como referido, se relaciona inequivocamente com uma montanha (não pode haver dois ou mais colos-chave possíveis). Avaliada a altitude do colo-chave, a proeminência vem expressa como:

Proeminência = Altitude da montanha - Altitude do colo-chave

A determinação da proeminência de uma montanha pode ser muito difícil, já que para cada montanha do planeta (à excepção do Monte Everest) existe sempre outra mais alta que ela, embora em certas ocasiões esta esteja a muitos quilómetros de distância. Quando o ponto mínimo está próximo da montanha em análise, o processo é bem mais fácil. A partir de modelos digitais do terreno será possível o desenvolvimento de algoritmos matemáticos para a avaliação da proeminência.

Cume principal ou cume pai


O cume principal ou cume pai de um monte (parent peak, em inglês) é o de maior elevação que se usa no cálculo da sua proeminência. A relação inversa é de subcume. Se há diversos cumes de altitudes semelhantes, a forma de estabelecer quais são subcumes de quais (já que uns podem ser subcumes de outros de forma sucessiva) pode ser confusa. Um exemplo fácil é o da Figura 1, onde pico do meio é um subcume do pico da direita, o qual é por sua vez um subcume do pico da esquerda, que é o principal deste sistema, estando marcados os colos-chave de cada um deles.

Em relação ao cume principal definem-se os conceitos de "paternidade" (em inglês parentage) que relacionam um dado pico com o seu cume principal. Há três tipos de "famílias"; a encirclement parentage (paternidade de circunscrição), a prominence parentage (paternidade de proeminência), e a height parentage (paternidade de altitude).

Paternidade do cume principal

Situações interessantes de proeminência

Os cumes principais e os colos-chave costumam estar muitas vezes próximos da montanha em análise. No entanto, com as montanhas importantes isto não é habitual, e os cálculos são complicados. Só com recentes programas informáticos e com a exploração cuidada de bases de dados geográficos se pode descobrir algumas particularidades como as seguintes:

Quantificadores orométricos


A partir da altitude e da proeminência desenvolvem-se outros quantificadores orométricos que servem para expressar as propriedades métricas de uma montanha como a dominância, que é a relação entre a altitude e a proeminência, a potência, que relaciona a altitude, a proeminência e o colo-chave, e outros mais, que nos ajudam a definir objectivamente a importância de uma determinada montanha.

Por exemplo, a dominância é definida como a relação existente entre a proeminência e a altitude de uma montanha. Esta magnitude indica que fracção da altitude do pico lhe dá a sua proeminência:

dominância=proeminência·100/altitude

Este quantificador não pode expressar a relevância da elevação: Um ilhéu costeiro que se erga próximo aos Açores a 25 metros acima do mar possui uma altitude=proeminência=25 m e uma dominância de 100%. Esta mesma dominância é a que corresponderia à Montanha do Pico, muito mais alta.

Outro quantificador é o isolamento topográfico - a distância horizontal mínima (segundo um grande círculo) até outro ponto mais elevado.

Lista de montanhas por proeminência


As dez montanhas de maior proeminência no mundo são as seguintes (para uma tabela mais completa veja-se Lista de montanhas por proeminência):

No. Pico Localização Altitude (m) Proeminência (m) Ponto-sela (m) Cume-pai
1. Monte Everest Nepal /
 China
8848 8848 0 nenhum — mais alto da África-Eurásia
2. Aconcágua  Argentina 6962 6962 0 nenhum — mais alto da América
3. Monte McKinley (Denali)  Estados Unidos (Alaska) 6194 6138 56 Aconcágua
4. Kilimanjaro Tanzânia 5895 5885 10 Everest
5. Pico Cristóbal Colón  Colômbia 5775 5584 191 Aconcágua
6. Monte Logan  Canadá (Yukon) 5959 5250 709 Monte McKinley
7. Pico de Orizaba  México 5636 4922 714 Monte Logan
8. Maciço de Vinson  Antártida 4892 4892 0 nenhum — mais alto da Antártida
9. Puncak Jaya Indonésia (Nova Guiné) 4884 4884 0 nenhum — mais alto da Nova Guiné
10. Monte Elbrus  Rússia 5642 4741 901 Everest

Ver também


Ligações externas











Categorias: Geografia física | Topografia | Montanhas | Montanhismo




Data da informação: 17.12.2020 11:58:34 CET

Fonte: Wikipedia (Autores [História])    Licença: CC-by-sa-3.0

Mudanças: Todas as imagens e a maioria dos elementos de design relacionados a essas foram removidos. Alguns ícones foram substituídos por FontAwesome-Icons. Alguns modelos foram removidos (como "o artigo precisa de expansão) ou atribuídos (como" notas de rodapé "). As classes CSS foram removidas ou harmonizadas.
Os links específicos da Wikipedia que não levam a um artigo ou categoria (como "Redlinks", "links para a página de edição", "links para portais") foram removidos. Todo link externo possui um FontAwesome-Icon adicional. Além de algumas pequenas mudanças de design, foram removidos os contêineres de mídia, mapas, caixas de navegação, versões faladas e microformatos geográficos.

Observe: Como o conteúdo fornecido é retirado automaticamente da Wikipedia no momento especificado, uma verificação manual foi e não é possível. Portanto, o LinkFang.org não garante a precisão e a atualidade do conteúdo adquirido. Se houver uma informação incorreta no momento ou com uma exibição imprecisa, sinta-se à vontade para Contate-Nos: email.
Veja também: Cunho & Política de Privacidade.